
© 2015 EnterpriseDB Corporation. All rights reserved. ‹#›

PostreSQL Monitoring
Enhancements

1

-Rahila Syed

© 2017 EnterpriseDB Corporation. All rights reserved. ‹#›

Progress Reporting API

• Progress reporting of utility commands

• Parameters reported

• 10 64-bit counters in shared memory

• OID of the relation which command targets

• Type of the command for which progress is being reported

• System views examining the parameters reported

BACKEND
PROCESS

SYSTEM
VIEWS

ProgressCommandType st_progress_command;
 Oid st_progress_command_target;
 int64 st_progress_param[]

pgstat_progress_start_command()
pgstat_progress_end_command()
pgstat_progress_update_param()

2

pg_stat_get_progress_info

© 2017 EnterpriseDB Corporation. All rights reserved. ‹#›

VACUUM Progress Checker

• System view - pg_stat_progress_vacuum

• Phases of VACUUM

• Heap Scanning

• Heap Vacuuming

• Index Vacuuming

• Cleaning up indexes

• Truncating heap

• Performing final cleanup

• Progress parameters

3

postgres=# select * from pg_stat_progress_vacuum;

 pid | datid | datname | relid | phase | heap_blks_total | heap_blks_scanned |
-----+-------+---------+-------+-------+-----------------+-------------------+-----------------
heap_blks_vacuumed | index_vacuum_count | max_dead_tuples | num_dead_tuples
—-————————-+——————————+————————-+————————
(0 rows)

© 2017 EnterpriseDB Corporation. All rights reserved. ‹#›

Progress Reporting in Other Databases
• Oracle

• v$session_longops- Dynamic performance view

• Track query running longer than 6 seconds

• Commands

• Table scan

• Index Fast Full Scan

• Hash join

• Sort/Merge

• Phases

• Progress reports in phases of linear progress

• Time remaining = elapsed_seconds * (totalwork - sofar)/sofar

• Information

 select opname, target, sofar, totalwork, units, elapsed_seconds, message from v$session_longops order by
start_time desc;

4

© 2017 EnterpriseDB Corporation. All rights reserved. ‹#›

Progress Reporting in Other Databases

• MariaDB

• Separate progress reporting for stages of the command

• Commands

• Alter table

• Create index

• Drop index

• Load data infile

• Information

• Stage

• Max_stage

• Progress (within current stage)

5

ALTER TABLE my_mail ENGINE=maria;
Stage: 1 of 2 'copy to tmp table' 5.37% of stage done

© 2017 EnterpriseDB Corporation. All rights reserved. ‹#›

Take Aways

• Progress is reported in phases

• The linear prediction can be wrong

• Report current state of operations

6

© 2017 EnterpriseDB Corporation. All rights reserved. ‹#›

Create Index

Index Heap Scan

Forming index entries

Inserting index entries

nheaptup/totalheaptup

nindextup/totalindextup

progress as per access method

7

© 2017 EnterpriseDB Corporation. All rights reserved. ‹#›

Btree

• Phase 1 : Scanning the heap for tuples to be indexed

• Number of tuples scanned versus total number of tuples

• Phase 2: Sorting the tuples

• In memory sort : Fast and lesser need for a progress report

• External merge sort: Multiple levels for reporting progress

• Phase 3: Write to the index

• Number of tuples written versus total number of index tuples

• Phase 4: Writing statistics information

• Updating heap and index pg_class rows

8

© 2017 EnterpriseDB Corporation. All rights reserved. ‹#›

External Merge Sort

• Sort the batches of tuples that fit in memory and write to tapes as individual runs

• The progress can be measured in terms heap blocks written versus total heap
blocks in relation

• Tapes with sorted runs are merged

• Compare the first runs on each tape writing the smallest tuple to an output tape.

• The progress of this phase can be measured by counting the tuples written to output
tape versus total index tuples.

• Polyphase merge

• Each run is written once to tape for each pass

• Progress can be measured by number of runs written to tapes versus total runs *
number of passes

9

© 2017 EnterpriseDB Corporation. All rights reserved. ‹#›

GIN

• Phase 1: Scan the heap for heap tuples to be indexed

• Number of heap tuples versus total heap tuples

• Phase 2: Extract index entries from each heap tuple

• Insert the index entries in temporary buffer, if the memory is full perform phase 3.

• Number of heap tuples versus total heap tuples

• Phase 3: Insert remaining index entries from temporary buffer into an index

• Index entries inserted versus total index entries

• Phase 4: Writing statistics information

• Phase 5: Writing WAL record

10

© 2017 EnterpriseDB Corporation. All rights reserved. ‹#›

Gist

• Phase 1: Scan the heap for tuples to be indexed.

• Phase 2: Form the indexed tuple for each heap tuple

• Phase 3: Write the tuples to index

• Number of heap tuples processed / total number of heap tuples

• Heap scan and index write has one to one mapping, as there is one entry per heap
tuple

• Phase 4: Writing statistics information

• Phase 5: Writing WAL record

11

© 2017 EnterpriseDB Corporation. All rights reserved. ‹#›

BRIN

• Phase 1: Scan the heap for tuples to be indexed

• Phase 2: Form one index tuple for each range of the blocks

• Number of index entries = size of relation in pages / pages_per_range

• Phase 3: Write the tuple to index

• Entries created till now / number of index entries.

• Overall progress can be measured by heap tuples scanned / total number of heap
tuples

• Phase 4: Writing statistics information

• Phase 5: Writing WAL record

12

© 2017 EnterpriseDB Corporation. All rights reserved. ‹#›

CREATE INDEX

• The parameters that can be reported for a create index

• Oid of the target

• Type of index

• heap_tuples_scanned

• total_heap_tuples

• Type of sort (if applicable)

• heap_blocks_sorted(if applicable)

• index_tuples_inserted

• total_index_tuples

13

© 2017 EnterpriseDB Corporation. All rights reserved. ‹#›

CREATE INDEX

• Take away here is that different phases of an index scan can overlap

• In which case, it is will not return accurate estimate of remaining time

• Reporting progress of individual phases is the way to go

• Some times the individual phases are tightly coupled

• In which case it is fine to report progress in terms of one of the phases, like gist

• Progress measurement can be reasonably accurate if divided into linear phases

14

© 2017 EnterpriseDB Corporation. All rights reserved. ‹#›

CLUSTER

• Phase1 : Scan the heap (either in index order or sequentially)

• Phase 2: Writing clustered table to new heap

• Index scan : Each tuple scanned is immediately rewritten to new heap.

• Progress can be reported as tuples scanned/rewritten versus total tuples in
heap

• Sequential scan : Tuple is first written to tuplesort memory.

• Progress in this phase will be number of tuples accumulated for sorting against
total number of tuples in the heap.

• Tuples sorting

• Progress of this phase can me measured similar to progress of external
merge sort.

• Sorted tuples obtained are written into the heap.

• Progress of this phase can be measured as tuples written against total
number of tuples.

• Phase 3: Swap relation files
15

© 2017 EnterpriseDB Corporation. All rights reserved. ‹#›

ALTER TABLE

• Phase 1: Permission checks , preliminary examination, creation of work queues

• Phase 2: Executing the list of commands to be applied to the table

• Divided into multiple passes for subcommands

• Builds an index if phase 3 does not exist

• Phase 3: Check new constraints and rewrite the table/indexes

• Report tuples scanned versus total tuples in the table

• Progress of rewrite index relations same as create index

16

© 2017 EnterpriseDB Corporation. All rights reserved. ‹#›

Wait Events

• Wait events are the events that occur during a database operation when a request has
to be processed

• Current wait events infrastructure reports information about the type of the wait event a
backend is waiting on at that instant.

• It gives information on which event the query is waiting on if any at particular instant of
time

• Although to derive information about the bottlenecks in the system historic data needs
to be gathered

• This can be achieved by sampling the wait event info from pg_stat_activity over certain
intervals of time.

17

© 2017 EnterpriseDB Corporation. All rights reserved. ‹#›

Wait Events

• Wait events report where the backend is waiting

• Initially events reported were heavyweight , lightweight lock information

• Two columns in pg_stat_activity

• wait_event_type

• wait event

• Recent advancements include wait events for

• Activity

• Client

• Extension

• IPC

• Timeout

• I/O

18

© 2017 EnterpriseDB Corporation. All rights reserved. ‹#›

 THANK YOU!
 ANY QUESTIONS?
email id: rahila.syed@enterprisedb.com/ rahilasyed.
90@gmail.com

19

mailto:rahila.syed@enterprisedb.com
mailto:rahilasyed.90@gmail.com

